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Summary

1. Despite efforts in data collection, missing values are commonplace in life-history trait databases. Because

these values typically are not missing randomly, the common practice of removingmissing data not only reduces

sample size, but also introduces bias that can lead to incorrect conclusions. Imputingmissing values is a potential

solution to this problem. Here, we evaluate the performance of four approaches for estimating missing values in

trait databases (K-nearest neighbour (kNN), multivariate imputation by chained equations (mice), missForest

and Phylopars), and test whether imputed datasets retain underlying allometric relationships among traits.

2. Starting with a nearly complete trait dataset on the mammalian order Carnivora (using four traits), we artifi-

cially removed values so that the percent of missing values ranged from 10% to 80%.Using the original values as

a reference, we assessed imputation performance using normalized root mean squared error. We also evaluated

whether including phylogenetic information improved imputation performance in kNN, mice, and missForest

(it is a required input in Phylopars). Finally, we evaluated the extent to which the allometric relationship between

two traits (body mass and longevity) was conserved for imputed datasets by looking at the difference (bias)

between the slope of the original and the imputed datasets or datasets withmissing values removed.

3. Three of the tested approaches (mice, missForest and Phylopars), resulted in qualitatively equivalent imputa-

tion performance, and all had significantly lower errors than kNN. Adding phylogenetic information into the

imputation algorithms improved estimation of missing values for all tested traits. The allometric relationship

between body mass and longevity was conserved when up to 60% of data were missing, either with or without

phylogenetic information, depending on the approach. This relationship was less biased in imputed datasets

compared to datasets withmissing values removed, especially whenmore than 30%of values weremissing.

4. Imputations provide valuable alternatives to removingmissing observations in trait databases as they produce

low errors and retain relationships among traits. Although wemust continue to prioritize data collection on spe-

cies traits, imputations can provide a valuable solution for conducting macroecological and evolutionary studies

using life-history trait databases.

Key-words: Phylopars, missForest, kNN, multivariate imputation by chained equations, phylog-

eny, carnivores, rootmean squared error, bodymass, longevity

Introduction

Trait-based analyses are widely used to address ecological

and evolutionary processes from local to global scales (Lavo-

rel & Garnier 2002; Graham et al. 2012; Huang, Stephens &

Gittleman 2012). Life-history traits used in macroecological

studies generally include physical characteristics (e.g., body

mass or body length) and reproductive parameters (e.g., litter

size or weaning age). The incorporation of trait dimensions

of biodiversity in ecological studies is important for a range

of research areas, including ecosystem functioning (Loreau

2010), community ecology (McGill et al. 2006), population

ecology (Santini et al. 2013), extinction risk assessments (Pac-

ifici et al. 2013), and conservation (Cardillo et al. 2008).

Trait-based approaches often use large, ecoinformatic data-

bases that require enormous efforts to compile data from pri-

mary literature or field observations. Often, trait data are

scarce because many species are rare, cryptic, or occur in

remote locations (Nakagawa & Freckleton 2008). Conse-

quently, trait databases suffer from a chronic problem of

missing data.

A common practice is to use only species, traits or loca-

tions for which complete data are available and ignore those

for which some values are missing (e.g., Junker et al. 2013).

When data are missing completely at random (MCAR) the*Correspondence author. E-mail: caterina.penone@gmail.com
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consequence of removing incomplete observations is a

decrease in statistical power, due to decreased sample size

(Nakagawa & Freckleton 2008). However, real data are usu-

ally missing at random (MAR). Data are considered to be

MAR when the presence of missing data for a given variable

(e.g., gestation length) is related to the values of another

variable (e.g., body mass). In this case, values of missing

data in both these variables can be inferred based on other

variables in the dataset (Rubin 1976). When data are MAR,

deleting missing values can lead to misleading results in com-

parative studies or biased estimates of evolutionary parame-

ters (Hadfield 2008; Gonz�alez-Su�arez, Lucas & Revilla 2012;

Pakeman 2014). Taxonomic and phylogenetic bias is com-

monplace in trait databases; more information is available

for charismatic or otherwise well-studied taxonomic groups

(e.g., carnivores). Also, data on threatened or extinct species

are generally less complete (Fisher, Blomberg & Owens

2003). But the prevalence of missing values can also depend

on the traits themselves: in mammals, charismatic large-bod-

ied species with large geographic ranges and long lifespans

usually have more data entries (Gonz�alez-Su�arez, Lucas &

Revilla 2012). Finally, some traits are more complete

because they are easier to measure (e.g., morphology). These

issues in data availability can bias parameter estimates from

models, potentially leading to erroneous conclusions

(Nakagawa & Freckleton 2008). Some approaches deal with

missing values in data analyses using phylogenetic compara-

tive approaches (Cardillo et al. 2004), but do not fully

address the issue of losing statistical power as rows with

missing values are excluded from the analyses. Finding fur-

ther solutions to address the problem of missing data is

therefore important for improving our understanding of bio-

logical processes.

Many statistical alternatives to data deletion are available to

impute values that are MAR using the other variables as pre-

dictors. The main strategies to substitute missing values

include single, multiple or likelihood-based imputations.Many

of these tools have been designed, tested and used in medical,

biological or social sciences (Troyanskaya et al. 2001), but

their use for trait datasets is relatively recent (Fisher, Blomberg

& Owens 2003; Paine et al. 2011; Di Marco et al. 2012; Shan

et al. 2012; Taugourdeau et al. 2014). Evaluating, comparing

and examining the performance of several approaches for han-

dling missing data in trait databases is a key consideration in

selection of the appropriate software package for implementa-

tion of a given analysis (Joppa et al. 2013).

Our aim here is to determine whether imputation

approaches can be used to impute traits, and specifically the

relative performance of imputation approaches and how

imputation alters relationships among traits. We tested four

imputation approaches: K-nearest neighbour (kNN), multi-

variate imputation by chained equations (mice), a random

forest technique (missForest), and an approach based on

maximum likelihood that uses phylogenetic information

(Phylopars). We performed our tests with a complete trait

dataset where we artificially removed different percentages of

missing values. We then evaluated the performance of the

approaches by comparing the original values (from the com-

plete dataset) and the imputed values. In order to assess if the

imputed datasets recovered original biological patterns, we

evaluated whether the allometric relationship between two

traits changed in imputed datasets with increasing percent-

ages of missing values.

Phylogenetic information can improve the estimation of

missing trait values in the imputation process (Fisher, Blom-

berg & Owens 2003; Cardillo et al. 2008; Gu�enard, Legendre

& Peres-Neto 2013; Swenson 2014) because closely related

species tend to be more similar to each other (Pagel 1999) and

many traits display high degrees of phylogenetic signal (Blom-

berg, Garland & Ives 2003). We tested whether including

phylogenetic information improved the imputation process.

Commonly, taxonomic ranks are used to impute trait data

(e.g., Ter Steege et al. 2006), but this approach is subject to

how rank is defined and does not use the full information avail-

able in a phylogeny (Swenson 2014). Here, we refine previous

approaches based on taxonomy to include branch lengths from

phylogenetic trees in the imputation process. We expected that

adding phylogenetic information would improve our ability to

accurately impute values, especially for traits with higher

phylogenetic signal.

Methods

IMPUTATION APPROACHES

We evaluated four imputation methods that span a range of computa-

tion approaches and have been shown to perform better than other

approaches in comparisons using non-trait data. Single imputations

are the simplest approaches and replace missing values by a single

value, without any estimate of the uncertainty of the imputation. Single

imputations have been shown to be accurate for datasets with small

percentages of missing values (Schafer 1999). Among single imputation

approaches, the k-Nearest Neighbour (kNN) is one of the most precise

(Troyanskaya et al. 2001). We used the R package ‘VIM’, kNN func-

tion (Templ et al. 2013) that allows control of some imputation param-

eters, such as using either the mean or median value for imputation.

We also evaluated multiple imputations that take into account the

imputation uncertainty by running single imputation multiple times

and therefore may provide a more precise estimate of missing data.

These approaches impute incomplete datasets n times and analyse the n

imputed datasets using standard analytical methods. The n results of

the analyses are then pooled in one final result that gives the uncertainty

of the estimates (Nakagawa & Freckleton 2008). We chose Multivari-

ate Imputation with Chained Equations, as implemented by the ‘mice’

package for R (van Buuren & Groothuis-Oudshoorn 2011), because it

has smaller error and bias as compared to other multiple imputation

approaches (Ambler, Omar & Royston 2007; test with medical data).

Among the different possibilities of multiple imputation using mice, we

chose predictive mean matching because it preserves non-linear rela-

tionships (van Buuren & Groothuis-Oudshoorn 2011), which occur in

trait datasets (Santini et al. 2013). This method is the most frequently

used in previous imputations of trait data (Fisher, Blomberg & Owens

2003; Baraloto et al. 2010; Paine et al. 2011; Di Marco et al. 2012).

Imputations based on random forest algorithms can also be a valuable

alternative, as they have been shown to be highly accurate and require

little computational time (Pantanowitz & Marwala 2009). Random
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forests are machine-learning techniques that grow many decision

trees and output the clustering that appears most often in the individ-

ual trees (Breiman 2001). These approaches can deal with highly

dimensional data, do not rely on distributional assumptions and are

particularly appropriate for modelling complex interactions and non-

linear relationships among variables.We used the ‘missForest’ package

in R (Stekhoven & B€uhlmann 2012) that has been shown to perform

better than other approaches with various dataset types (Stekhoven &

B€uhlmann 2012), and has recently been used to impute mammal trait

data by Verde Arregoitia, Blomberg & Fisher (2013). Finally, we tested

a novel likelihood-based approach that estimates missing parameters

using both phylogeny and allometric relationships among traits:

Phylopars (Bruggeman, Heringa & Brandt 2009). This approach

showed promising results for missing data estimation in traits

(Gonz�alez-Su�arez, Lucas & Revilla 2012; Riek & Bruggeman 2013),

but has not yet been compared to other approaches. Phylopars uses a

phylogenetic variance-covariancematrix, which is a component of phy-

logenetic generalized linear models (Bruggeman, Heringa & Brandt

2009). Phylopars, missForest and kNN can all be considered as single

imputations because a single value is imputed for each missing datum.

More details on the approaches are given in supporting information

Data S1-1.

All these approaches use the relationships between traits to estimate

the missing values but only Phylopars also uses phylogenetic trees

directly for imputation. We thus evaluated how the addition of phylo-

genetic information influenced performance of the other three

approaches (i.e., kNN, mice and missForest). For this purpose, we

included phylogenetic information in the form of phylogenetic eigen-

vectors (Diniz-Filho, Ramos de Sant’Ana & Bini 1998) as additional

predictor variables in the imputation process. We therefore tested

kNN,mice andmissForest in twoways: (i) with traits only and (ii) with

both traits and phylogenetic information. Phylogenetic information for

kNN, mice, and missForest was summarized by eigenvectors extracted

from aprincipal coordinate analysis (PCoA), representing the variation

in the phylogenetic distances among species [following Diniz-Filho

et al. (2012a,b), PVRpackage].

To choose the number of eigenvectors to include in the analysis we

ran preliminary tests where we introduced an increasing number of

eigenvectors into the imputations and calculated the associated error

(see ‘imputation error calculation’ section). The details of this test are

given in supporting informationData S1-2. Error wasminimized when

including the first 10 eigenvectors as variables in the imputations (they

represented 65% of the variation in the phylogenetic distances among

species). This was consistent with the recommendations of the authors

of mice who suggest including fewer than 15–25 variables in the impu-

tation (van Buuren &Groothuis-Oudshoorn 2011). Note however that

these eigenvectors are more representative of divergences closer to the

root of the phylogeny so they do not include fine-scale differences

among species (Diniz-Filho et al. 2012a). It is also possible to account

for phylogenetic information after imputation through computation of

phylogenetic independent contrasts as done by Fisher, Blomberg &

Owens (2003). However, in the present approach phylogeny is directly

used in the imputation process on the form of additional traits or vari-

ance-covariance matrix (Phylopars) potentially improving missing

value estimation.

We ran all imputations (except Phylopars) and analyses in R 2.15.3

(R Core Team 2013). As we had to compute many imputations auto-

matically, we ran Phylopars using Python (Enthought Canopy, Austin,

TX, USA) with code provided by J. Bruggeman (Bruggeman, Heringa

& Brandt 2009). Full details on the choice of tuning parameters used in

kNN and missForest are given in supporting information Data S1-3.

We ran all the analyses on log-transformed traits to reduce potential

collinearity among predictors (van Buuren & Groothuis-Oudshoorn

2011) and because some of the approaches (e.g., kNN) could be sensi-

tive to data with varying scales in the variables (Stekhoven &

B€uhlmann 2012). We back-transformed the data after imputations to

calculate the error for each analysis, based on the original values (see

below).

TEST DATASET

We used a newly compiled trait dataset on all mammals, based on

Davidson et al. (2009) and Jones et al. (2009). We focused our

analyses on mammals in the order Carnivora which has 273 species

and has the most complete trait data. We chose the eight traits

that were most complete in our dataset: body mass, litter size,

maximum longevity, habitat breadth (these four traits had 6% of

missing values) and adult body length, diet breadth, gestation

length and weaning age (these four traits had 14% of missing val-

ues). From this initial dataset (hereafter, ‘original dataset’) we pro-

duced missing and imputed datasets (Fig. 1). All eight traits were

imputed but in order to compare imputed data with original data

(as complete as possible), all subsequent analyses were run on the

four most complete traits (body mass, litter size, maximum longev-

ity, and habitat breadth). Correlations between traits are given in

supporting information Data S1-4. For the analyses including

phylogeny, we used an interpolated smoothed tree of Mammals

(S.B. Hedges, J. Marin, M. Suleski, M. Paymer, & S. Kumar, sub-

mitted) containing all mammal species. The eigenvectors were

extracted from a pruned tree containing only the order Carnivora.

MISSING DATASETS

From the original dataset we derived eight incomplete datasets (Fig. 1),

removing 10%, 20%, 30%,.. to 80% of values in the four most com-

plete traits. In order to simulate real situations where data are not miss-

ing completely at random, values were removed in three ways

(hereafter, ‘missing dataset type’): (i) missing completely at random

(MCAR); (ii) missing at random with respect to body mass

(MAR.BM); (iii) missing at random with respect to phylogeny

(MAR.PH). In MAR.BM datasets we introduced 60% of the missing

values in small carnivores (below the median weight of 3 kg) and 40%

in large ones (above the median weight). In MAR.PH we introduced

60% of the missing values in closely related species (i.e. sharing the

same node) and 40% in the other ones. The proportions of 40–60%

were comparable to biases existing in real datasets [e.g., PanTHERIA

(Jones et al. 2009), see supporting information Data S1-5 for details].

Missing values were introduced in order to have at least one trait value

per species. To ensure representativeness of each dataset, we generated

10 different missing datasets per missing dataset type (MCAR,

MAR.BM, MAR.PH) and missing values percentage (10–80%)

(Fig. 1).

IMPUTED DATASETS

We imputed the missing datasets using the approaches described

above. In missForest and mice, two imputations in the same dataset

give slightly different results. Indeed, missForest averages the results

from multiple randomly generated trees and mice repeats the imputa-

tion multiple times. Therefore, for these approaches, we repeated the

imputations 10 times permissing dataset andmissing values percentage

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 961–970
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(Fig. 1). For mice, we extracted 10 imputed datasets per imputation

(i.e., a total of 100 imputed datasets permissing dataset and permissing

values percentage).

IMPUTATION ERROR CALCULATION

To assess the performance of each imputation approach, we calculated

a Normalized Root Mean Squared Error [NRMSE (Oba et al. 2003)],

which is the mean of squared imputation errors divided by the total

range for each trait (see equation in Fig. 1). Lower values of NRMSE

indicate better estimates of the variables. We calculated an error for

each trait variable separately and a mean error across all traits for each

imputed dataset. Because we made repeated imputations for missFor-

est and mice, we calculated the error based on the mean trait value

across all imputed datasets for each imputation approach (we also veri-

fied that using the median rather than the mean value would give very

similar results). Note that the error was calculated only on the missing

values that were artificially introduced in the datasets.

STATIST ICAL ANALYSES

Error analyses

First, we used linear mixed-effects models (LME, nlme package, Pin-

heiro et al. 2014) to test the effects of the following predictor vari-

ables on the error: missing dataset types (MCAR, MAR.BM,

MAR.PH), percentage of missing values, and imputation approach

(fixed effects). We ran the analyses separately for imputations

approaches with and without phylogeny. Second, to determine

whether adding phylogenetic information into the imputations

reduced the error, we ran the following model: error ~ missing data-

set type + percentage of missing values + presence/absence of the

phylogeny. We ran separate models using the error associated with

each trait and the mean error as response variables. We examined

the significance of each fixed effect with ANOVA. Because we gener-

ated 10 different datasets per missing type and per missing values

percentage, we included the identity of the missing dataset as a ran-

dom effect. The pairwise differences among approaches and missing

dataset types were tested using Tukey tests (multcomp package,

Hothorn, Bretz & Westfall 2008). Finally, we calculated the phyloge-

netic signal of traits using the K-statistic (Blomberg, Garland & Ives

2003) on the original dataset (phytools package, Revell 2012).

Allometric analyses

The value of the error itself does not indicate whether or not the

imputed datasets reflect true biological relationships. We thus looked

at the allometric relationships between two important mammalian life

history traits, body mass and longevity, in our original dataset and

compared it to the relationship in our imputed datasets. The compari-

sons were conducted separately for each imputed dataset, i.e. 10 com-

parisons per missing values percentage and per approach. We then

counted the number of times we encountered significant differences

between the original and the imputed slopes. We used this number as a

response variable to test for differences between approaches, using

ANOVA and glm with a Poisson distribution and percentage of missing

values as a covariate.

Bias analyses

We compared imputation and data deletion using the same allometric

relationship as above. In this case, we compared the bias in trait

relationships when using datasets that include imputed data versus

datasets that include only available raw data (i.e. removing those spe-

cies that have missing data). We calculated the slopes of the relation-

ship between body mass and longevity for the original dataset

(slopeoriginal), the missing datasets (slopemissing) and the imputed data-

sets (slopeimputed). We measured bias as the absolute value of the dif-

273 species
of Carnivora

4 traits
6% of NA’s

Introducing missing data (NA)
Missing datasets

Imputations
Imputed datasets

Error calculation

Missing at random in body size
(MAR-BM)

Missing at random in phylogeny 
(MAR-PH)

kNN
(with /without phylogeny)

mice
(with /without phylogeny)

missForest
(with /without phylogeny)

Phylopars
(includes phylogeny)

1 Normalized Root Mean Square Error value 
per imputed dataset and per trait

...

3 missing dataset types x 8 percentages of missing values x 10 = 240 missing datasets

240 missing datasets x 4 approaches 
= 960 imputed datasets 

(96 000 for mice and 9600 for missForest)

0%NA 0%NA 0%NA 0%NA

Missing completely at random 
(MCAR)

10 to 80 % of values removed:

10%NA 20%NA 30%NA 80%NA...

10%NA 20%NA 30%NA 80%NA...

10%NA 20%NA 30%NA 80%NA...

x10

x10

Allometric relationship
Original, missing and imputed datasets Body massLi

fe
sp

an

Bias = | Slope original – Slope imputed missing(or Slope )|

Original dataset

NRMSE =
mean X original X imputed( )2( )

max X original( ) min X original( )

Slope

•

•

•

x10 x10 x10 x10

x10 x10 x10 x10

x10 x10 x10 x10

All missing data imputed 
Fig. 1. Main steps used in our methods.

From an initial original dataset we generated

3 types of missing datasets with 8 increasing

percentages of missing values (NAs). We

repeated this step 10 times. We imputed the

previous missing datasets using the four dif-

ferent approaches (with and without phyloge-

netic information). We calculated an error by

comparing the original dataset with the

imputed datasets. We compared the slopes of

the allometric relationship (between body

mass and longevity) among original, missing

and imputed datasets.
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ference between slopeoriginal and slopemissing or slopeimputed. We then

used a GLM with normal distribution followed by Tukey tests to

examine differences in bias between the missing datasets and mean

bias of imputed datasets (because there were 10 imputed datasets per

missing dataset). Percentage of missing values and missing dataset

type were included as covariates. The two last analyses were done sep-

arately on approaches with and without phylogenetic information.

To determine whether adding phylogenetic information into the

imputations reduced the bias, we ran the following model: bias ~

missing dataset type + percentage of missing values + presence/

absence of the phylogeny.

Results

ERROR ANALYSES

The approaches that performed better without including phy-

logeny were mice and missForest (Fig. 2 and Table S1-6-t1);

no significant differences were found between these two

approaches. When phylogenetic information was added into

the imputation process, mice, missForest and Phylopars

performed equally well (Tukey pairwise comparisons were not

significant) and kNN gave the highest errors (Table 1).

However, there were some differences in the imputation error

for different traits (see Table 1 and Tables S1-6-t1 and S1-6-

t2): mice estimated the values of body mass better than Phylo-

pars andmissForest (either with or without phylogenetic infor-

mation). The latter two approaches estimated the values of

longevity and habitat breadth better than mice (with phyloge-

netic information). There was no difference in how the four

approaches performed in their estimate of litter size. The esti-

mated values of body mass and litter size were more precise

than for longevity and habitat breadth by all approaches

(Table S1-6-t2).

Overall, error differences among the three missing dataset

types (MCAR, MAR.BM, MAR.PH) were marginally or not

significant (Table 1 and S1-6-t1). However, there was a trend

for poorer estimation of trait values when more data were

missing in closely related species (MAR.PH) for body mass,

longevity, and litter size, but not habitat breadth.

Adding phylogenetic information reduced the error for all

the approaches except for kNN (Table 2). This result was

stronger for missForest than for mice. Nevertheless, it did not

improve the estimation of litter size in any approaches. Lon-

gevity was the trait whose estimation improved the most with

the inclusion of phylogenetic information (even for kNN).

Note that even if not significant, the phylogenetic imputation

always improved the estimation of values for all traits, across

all approaches (negative values in Table 2). The phylogenetic

signal of traits was stronger for body mass (Blomberg’s

K = 0�84, P = 0�001) than for longevity (K = 0�43, P = 0�001)
and habitat breadth (K = 0�25, P = 0�001). It was not signifi-
cant for litter size (K = 0�05,P = 0�95).

ALLOMETRIC ANALYSES

For imputations without phylogeny, our analyses evaluating

the allometric relationship between body mass and longevity

showed that the relationships were preserved when up to

60% of the values were missing for mice, and up to 40% were

missing for kNN and missForest (Figs 3, 4, S1-6-f1 and

Table S1-6-t3); only differences between mice and missForest

were significant (v2,66 = 39, P = 0�03). In contrast, for impu-

tations with phylogenetic information, analyses showed that

the relationships were preserved when up to 60% of the val-

ues were missing for Phylopars and missForest, and up to

40% were missing for mice, and the relationships were not

preserved at all for kNN (Figs 3, 4, S1-6-f1 and Table S1-6-

t3). However, here we did not find any significant differences

among approaches (v3,88 = 59, P = 0�6).

BIAS ANALYSES

Overall, our analyses showed that bias was lower whenmissing

data were imputed rather than deleted. For instance, when

phylogenetic information was not included, bias was lower in

datasets imputed with mice and kNN, compared to datasets

0·06

0·08

0·10

0·12

Approach
kNN
mice
missForest

(a)

0·06

0·08

0·10

0·12

0 20 40 60 80

Percentage of missing values

M
ea

n 
er

ro
r

Approach
kNN
mice
missForest
Phylopars

(b)

Fig. 2. Mean error (NRMSE) for kNN, missForest, mice and Phylo-

pars on three types of missing datasets and eight levels of data removal

(from 10% to 80%); (a) with and (b) without phylogenetic eigenvec-

tors. The Phylopars approach can only be performed using phyloge-

netic information.
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with missing data or datasets imputed with missForest (Fig. 5

and Table 3). When phylogenetic information was included,

all approaches had a comparable bias that was significantly

lower than bias in datasets with missing data (Fig. 5 and

Table 3). These differences seemed to increase whenmore than

30% of values were missing. Figure 5 presents the results from

the allometric analyses (Fig. 3, 4, S1-6-f1 and Table S1-6-t3)

and shows that for all approaches, bias increased when up to

60% of the values were missing. Phylogenetic imputation

reduced the bias for missForest (F1,43 = 71,P < 0�001) but not
for mice (F1,43 = 0�4, P = 0�5) and kNN (F1,43 = 0�01,
P = 0�93). Note that for high percentages of missing values,

bias seemed to be higher for mice when phylogenetic informa-

tion was added (Fig. 5), but this was not significant. Finally,

we did not find any significant differences in bias among miss-

ing dataset types (MCAR, MAR.BM and MAR.PH) in this

analysis (F2,110 = 1,P = 0�3).

Discussion

All imputation approaches we tested provided valuable alter-

natives to data deletion in our trait database, and were reliable

with up to 60% of missing values (Table S1-6-t3). We found

that allometric relationships, particularly between body mass

and longevity, were preserved in the imputed datasets (Figs 3,

4 and 5). Additionally, removing species with missing values

from the analysis created more bias than imputing data, espe-

cially whenmore than 30%of the data weremissing.However,

as expected, the accuracy of estimated trait values decreased

with increasing percentage of missing values. This has to be

taken into account as datasets on poorly studied species are

likely characterised by higher proportions ofmissing data.

Adding phylogenetic information to the imputation process

improved the estimation of the traits evaluated in our analysis

for all the approaches, and decreased the bias in trait relation-

ships for missForest. Imputation approaches with phyloge-

netic variance-covariance matrix (Phylopars) and phylogenetic

eigenvectors (missForest and mice) gave similar results. How-

ever, phylogenetic information did not improve estimation

equally among traits. Estimation of litter size, for example, did

not improve (or worsen) with the inclusion of phylogenetic

information, but this trait did not exhibit phylogenetic signal

in our dataset. Phylogenetic imputation, however, did improve

estimation of body mass, but only weakly. While this trait

exhibited a relatively strong phylogenetic signal compared to

the other traits evaluated here, signal was still lower than

expected under Brownian motion (under Brownian motion

Blomberg’s K � 1; in our dataset body massK = 0�84). Addi-

Table 1. Effects of missing dataset types, percentage of missing values and approach on the error for datasets imputed with phylogenetic informa-

tion. Results of the ANOVA are given in italics, the intercepts + standard errors of Tukey tests are in non-italics. For results without phylogeny, see

Table S1-6-t1

Analyses with phylogeny - Error

Mean Bodymass Litter size Longevity Habitat Breadth

Percent of missing values F1,944 = 369*** F1,944 = 125*** F1,944 = 74*** F1,944 = 206*** F1,944 = 76***

Missing dataset type F2,944 = 5* F2,944 = 8* F2,944 = 4* F2,944 = 1 F2,944 = 13***

MCAR-MAR.BM �0�001 � 0�001 0�002 � 0�002 0�004 � 0�003 0�002 � 0�001 �0�011 � 0�002***
MAR.PH-MAR.BM 0�002 � 0�001 0�009 � 0�002*** 0�009 � 0�003* 0�001 � 0�001 �0�009 � 0�002***
MAR.PH-MCAR 0�003 � 0�001* 0�007 � 0�002** 0�005 � 0�003 �0�0001 � 0�001 0�002 � 0�002
Method F3,944 = 23*** F3,944 = 77*** F3,944 = 0�4 F3,944 = 41*** F3,944 = 6***

mice-kNN �0�008 � 0�001*** �0�039 � 0�002*** 0�003 � 0�003 �0�001 � 0�001 0�002 � 0�002
missForest-kNN �0�010 � 0�001*** �0�011 � 0�002*** �0�0002 � 0�004 �0�012 � 0�001*** �0�007 � 0�002*
Phylopars-kNN �0�009 � 0�001*** �0�022 � 0�002*** 0�0003 � 0�004 �0�009 � 0�001*** �0�005 � 0�002
missForest-mice �0�001 � 0�001 0�018 � 0�002*** �0�004 � 0�004 �0�012 � 0�001*** �0�009 � 0�002**
Phylopars-mice �0�001 � 0�001 0�018 � 0�002*** �0�003 � 0�004 �0�009 � 0�001*** �0�007 � 0�002*
Phylopars-missForest 0�001 � 0�001 �0�001 � 0�002 0�001 � 0�004 0�003 � 0�001 0�001 � 0�002

Significance codes: ***:P < < 0�001, **: 0�001 < P < 0�01,*: 0�01 < P < 0�05.
MCAR,missing completely at random;MAR.BM,moremissing values in small species;MAR.PH,moremissing data in closely related species.

Table 2. Comparison between imputations with and without phylogeny. Results of the ANOVA testing the effect of presence/absence of phylogenetic

eigenvectors on the error are given in italics, the intercepts + standard errors of Tukey tests are in regular type

Error

Mean Bodymass Litter size Longevity Habitat Breadth

All methods F1,1424 = 50*** F1,1424 = 10** F1,1424 = 0�5 F1,1424 = 86*** F1,1424 = 39***

mice �0�005 � 0�001*** �0�005 � 0�002** �0�0009 � 0�003 �0�004 � 0�001** �0�008 � 0�002***
missForest �0�009 � 0�001*** �0�006 � 0�002* �0�0003 � 0�003 �0�015 � 0�001*** �0�014 � 0�003***
kNN �0�002 � 0�002 �0�002 � 0�003 �0�002 � 0�001 �0�003 � 0�002* �0�003 � 0�002

Significance codes: ***:P < < 0�001, **: 0�001 < P < 0�01,*: 0�01 < P < 0�05.
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tionally, both body mass and litter size were well estimated

even without the inclusion of phylogenetic information.

Estimates of longevity and habitat breadth substantially

improved with phylogenetic imputation. The imputation

approaches that we tested use both allometric relationships

and phylogenetic relatedness as predictors. Including phylog-

eny can account for similarities among taxa that cannot be

explained by simple allometries. The importance of adding

phylogeny will likely vary in different traits being more impor-

tant where phylogenetic signal is stronger and when there are

no other traits with strong signal. Our results suggest that

although trait databases often contain traits with different lev-

els of phylogenetic signal, phylogenetic imputations should be

used when possible because in no cases did they decrease the

quality of trait imputation. In our study we used 10 eigenvec-

tors. As discussed in Diniz-Filho et al. (2012a,b), the first ei-

genvectors contain mainly information on basal divergences,

so by using only 10 eigenvectors we miss the most recent splits

in the phylogeny.Howeverwe found that using 10 eigenvectors

optimized the imputation error for missForest and mice (see

supporting information Data S1-2). This result was surprising

and may be related to the fact that adding many eigenvectors

might dilute the information contained in the other traits. In

order to avoid potential circularity in the imputation, the phy-

logeny should not be built using shared traits but based pri-

marily onmolecular data, as was the case in this study. Finally,

as highlighted by Swenson (2014), the quality of the phyloge-

netic tree may affect the quality of the imputation, so analyses

using imputed datasets should consider the resolution of the

trees used for imputation.

We did not find large differences in the estimation of traits

when data were missing completely at random (MCAR) or

missing at random (MAR) with respect to body mass

(MAR.BM) or phylogeny (MAR.PH). This was found both in

analyses considering the error and the bias of imputations. Our

result was different from a previous study based on all mam-

malian orders which found that datasets biased in body mass

led to poor estimates of other traits (Gonz�alez-Su�arez, Lucas

& Revilla 2012). The difference in these results could be a con-

sequence of the differences in values of body mass between the

two datasets; body mass ranges from 6 g to 743 kg in Carni-

vores and 2 g to 3824 kg in all mammals. Evaluations of impu-

tation approaches on other datasets with additional traits and

taxonomic groups or on simulated data would be informative

to confirm the robustness of these approaches.

Our study suggested that mice, missForest, and Phylopars

performed similarly, while kNN performed less well. This is

likely because kNN implements a single evaluation of values,

thus ignoring the variation in estimation due to imputation

and is hence less precise than methods that account for uncer-

tainty caused by estimating missing data. However, when no

phylogenetic information was added, mice gave better results

than missForest in the allometric analyses. This difference was

not significant when the phylogeny was used in the imputa-

tions.

Given that the three best approaches performed similarly,

other insights might help the user to choose one approach over

another (Table 4). Phylopars and missForest do not require

specific user skills or knowledge about the relationship among

traits. Indeed, they make very few assumptions about struc-

tural aspects of the data. Nevertheless, a minimal knowledge

of datasets is always recommendable in order to detect poten-

tial anomalous estimates of trait values. Phylopars is a web

application, which is very easy to use, but does not permit

batch analyses. Moreover, due to limited computational

resources, it does not handle datasets with >20 000 values, and

even imputations with smaller datasets can take a long time.

Both issues can be resolved by obtaining (and modifying) the

python source code from the author of Phylopars (Bruggeman,

Heringa & Brandt 2009). In mice, linear dependencies between
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datasets (grey crosses) for missForest (phylogenetic imputations). mice
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variables cause fatal errors and should be eliminated before

imputation. This is potentially a recurrent and considerable

problem because trait data tend to be correlated with each

other. Mice is a rich tool that includes many multiple imputa-

tion methods and options. However, this diversity of choices

may also be bewildering for basic users and jeopardize repeat-

ability. Predictive mean matching is considered an effective

overall imputation method by its authors (van Buuren &

Groothuis-Oudshoorn 2011). However, we recommend speci-

fying function details when using mice for trait imputations.

Finally, our study showed that kNNdid not perform as well as

the other approaches because it produced larger errors and

induced more bias in the allometric relationship. In addition,

for kNN the user must specify a value of the tuning parameter

k (number of neighbours used in the analysis – see supporting

information Data S1-3), which is difficult to determine a priori

and can have a substantial impact on the performance of

imputation.

In this study, we did not test datasets with categorical traits

(all categorical or mixed continuous/categorical traits). Miss-

Forest, kNN, and mice can analyse categorical variables

(either nominal or ordinal) as they are; whereas Phylopars

requires the use of dummy variable coding (transforming

trait categories into many dichotomous variables). A test of

imputation performance with non-trait categorical data found

that missForest performed better than mice and another func-

tion based on nearest-neighbour (using dummy coding) for

both categorical and mixed datasets (Stekhoven & B€uhlmann

2012). Because trait databases have both categorical and con-

tinuous variables, approaches that can easily evaluate both are

of greater interest. A study similar to ours, evaluating a combi-

nation of continuous and categorical variables (both nominal

and ordinal) would be valuable for further guiding the future

use of imputation approaches on traits datasets.

Data imputation is dependent on data quality and quantity.

Some traits are more likely to be accurate than others. For

instance, it is easier to measure body length than longevity

because the former can be obtained quickly from multiple

sources (e.g., field, museum and captivity data). Conversely,

longevity may be difficult to measure, especially for long-lived

species, and may vary in the wild and in captivity. Trait values

can vary across a species range, therefore multiple measure-

ments are preferable. Although our results suggest that impu-

tation can be helpful when dealing with missing data, the

addition of new data from literature, museum specimens and

fieldwork is important and remains greatly needed.

In summary, we show that imputation is a promising and

viable solution to help fill gaps in large trait databases where

missing data can cause statistical biases and mask biological
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Fig. 5. Mean bias for four imputation approaches and the missing

datasets (i.e. raw data, with missing data and no imputation) on eight

levels of data removal (from 10% to 80%); (a) with and (b) without

phylogenetic information. Bias = |Slopeoriginal � Slopeimputed (or

Slopemissing)|, where Slope = slope of the relationship between logged

values of bodymass and longevity.

Table 3. Results of Tukey tests for the bias. Significant relationships

are in bold

Methods Estimate SE z value P

Without phylogeny

mice-kNN �0�05 0�04 �1�153 0�65
missForest-kNN 0�19 0�04 4�783 <0�001
missing.datasets-kNN 0�12 0�04 2�919 0�02
missForest-mice 0�24 0�04 5�936 <0�001
missing.datasets-mice 0�16 0�04 4�072 <0�001
missing.datasets-missForest �0�07 0�04 �1�864 0�24
With phylogeny

mice-kNN �0�02 0�04 �0�55 0�98
missForest-kNN �0�08 0�04 �1�77 0�39
missing.datasets-kNN 0�13 0�04 3�04 0�02
Phylopars-kNN �0�01 0�04 �0�18 0�99
missForest-mice �0�05 0�04 �1�22 0�74
missing.datasets-mice 0�16 0�04 3�59 0�003
Phylopars-mice 0�02 0�04 0�37 0�99
missing.datasets-missForest 0�21 0�04 4�81 <0�001
Phylopars-missForest 0�07 0�04 1�59 0�5
Phylopars-missing.datasets �0�14 0�04 �3�22 0�01

Bias = |Slopeoriginal � Slopeimputed (or Slopemissing)|, where

Slope = slope of the relationship between logged values of body mass

and longevity.
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patterns. We hope that our study stimulates additional

research on imputation approaches, perhaps by considering

trait characteristics or multiple taxonomic groups. As trait da-

tabases continue to be improved, both by imputation

approaches and further data collection, we will increase our

ability to advance macroecological theory and address global

conservation issues.
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