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Abstract

Comparative extinction risk analysis is a common approach for assessing the relative plight of biodiversity and mak-

ing conservation recommendations. However, the usefulness of such analyses for conservation practice has been

questioned. One reason for underperformance may be that threats arising from global environmental changes (e.g.,

habitat loss, invasive species, climate change) are often overlooked, despite being widely regarded as proximal driv-

ers of species’ endangerment. We explore this problem by (i) reviewing the use of threats in this field and (ii) quanti-

tatively investigating the effects of threat exclusion on the interpretation and potential application of extinction risk

model results. We show that threat variables are routinely (59%) identified as significant predictors of extinction risk,

yet while most studies (78%) include extrinsic factors of some kind (e.g., geographic or bioclimatic information), the

majority (63%) do not include threats. Despite low overall usage, studies are increasingly employing threats to

explain patterns of extinction risk. However, most continue to employ methods developed for the analysis of herita-

ble traits (e.g., body size, fecundity), which may be poorly suited to the treatment of nonheritable predictors including

threats. In our global mammal and continental amphibian extinction risk case studies, omitting threats reduced

model predictive performance, but more importantly (i) reduced mechanistic information relevant to management;

(ii) resulted in considerable disagreement in species classifications (12% and 5% for amphibians and mammals,

respectively, translating to dozens and hundreds of species); and (iii) caused even greater disagreement (20–60%) in a

downstream conservation application (species ranking). We conclude that the use of threats in comparative extinction

risk analysis is important and increasing but currently in the early stages of development. Priorities for future studies

include improving uptake, availability, quality and quantification of threat data, and developing analytical methods

that yield more robust, relevant and tangible products for conservation applications.
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Introduction

Present rates of global species extinction are two to

three orders of magnitude greater than background

levels recorded in geologic history (Barnosky et al.,

2011; Pimm et al., 1988, 1995). Around 20% of

assessed vertebrate species are currently listed as

threatened under the International Union for the Con-

servation of Nature (IUCN) Red List (Hoffmann et al.,

2010). Human impacts, such as agricultural expan-

sion, logging, overexploitation, climate change and

invasive species, are widely recognized as the major

drivers of the current global extinction crisis (e.g.,

Davies et al., 2006). Inadequate alleviation of such

threats is the key factor limiting the effectiveness of

current conservation strategies aiming to reduce or

reverse biodiversity loss (Hoffmann et al., 2010;

Tranquilli et al., 2012).

The risk of a species’ decline in abundance or extinc-

tion (often measured as a relative level of endanger-

ment, e.g., as per the IUCN Red List) is nevertheless

also strongly influenced by its intrinsic life-history and

ecological traits, such as body size, fecundity or ecologi-

cal versatility (Fisher et al., 2003; Cardillo et al., 2004;

Purvis et al., 2005; Lee & Jetz, 2011). For instance, rela-

tively larger-bodied and longer-lived bird species are

more likely to go extinct as a result of overhunting,

whereas small-bodied species with high habitat special-

ization are more likely to decline in response to habitat

loss (Owens & Bennett, 2000). Extinction risk is thus

shaped by interactions that arise between species’
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intrinsic traits and the extrinsic factors including threats

to which they may be exposed (Fig. 1).

Comparative extinction risk analysis has been one

tool used to explore these complex interactions. By syn-

thesizing global- or regional-scale information across

large numbers of species, these macroecological analy-

ses can yield important conservation recommendations

by elucidating why some species are more vulnerable

to extinction processes than others (e.g., Purvis et al.,

2000; Jones et al., 2003; Koh et al., 2004; Cardillo et al.,

2006; Cooper et al., 2008; Davidson et al., 2009; Isaac

et al., 2009; Di Marco et al., 2012; Gonz�alez-Su�arez &

Revilla, 2012).

In a recent review, however, Cardillo and Meijaard

(2012) highlight a general lack of influence that compar-

ative extinction risk analyses have had on conservation

practice and policy (i.e. ‘primarily academic exercises’).

One reason for this underperformance may be that

these studies seem to focus more heavily on species’

intrinsic traits, reflecting general patterns of ‘vulnerabil-

ity’ or ‘extinction proneness’ (Reynolds, 2003; Purvis

et al., 2005), than on their more immediate and poten-

tially manageable causes of endangerment: extrinsic

threats (Fisher et al., 2003).

Although trait-based responses can sometimes reflect

or help identify the nature of underlying or unknown

threats (e.g., Williams & Hero, 1998), failing to explic-

itly consider threats in comparative extinction risk anal-

yses could be limiting for several reasons. In models

that employ intrinsic traits only as predictor variables,

there is an implicit assumption that susceptibility to

decline or extinction is the result of trait-based vulnera-

bility to some uniform, average or overarching threat

(Fritz et al., 2009). However, we cannot assume that all

threats are equal, or that a species’ response to one

threat will be correlated with its response to others.

For example, in addition to interactions that might

arise between extrinsic threats and intrinsic traits

(Fig. 1), threats often vary spatially and/or temporally

in their presence and magnitude (Myers, 1988; Wilcove

et al., 1998; Harcourt & Parks, 2003; Davies et al., 2006),

and their prevalence can vary significantly between tax-

onomic groups (Mace & Balmford, 2000). Threats could

also influence the decline in a population at multiple

spatial or temporal scales (Wilcove et al., 1998). Differ-

ent threats may also cause different types of population

responses, depending on distinctions in the rate at

which they cause mortality over time (Mace et al., 2008;

Di Fonzo et al., 2013), and multiple threats may impact

a species interactively or additively (e.g., Hof et al.,

2011). If adequately quantified, these factors should

explain additional variation in extinction risk patterns

among species, beyond the variation that might be

attributable to the mediating effects of intrinsic traits

alone.

Due to the correlative nature of comparative extinc-

tion risk analyses, intrinsic trait-only models must

implicitly include the above characteristics and other

nuances related to threats (analogous to e.g., species

interactions in correlative species distribution models;

Pearson & Dawson, 2003). As such, while performance

of trait-based extinction risk analyses might be reason-

able for a given case study (e.g., Davidson et al. (2009)

was able to classify threat listings in mammals globally

with >80% accuracy based solely on intrinsic trait data),

models failing to explicitly include threats may be

poorly suited to extrapolation or have limited transfer-

ability into different regions, taxa or timeframes (e.g.,

future projections). For instance, trait-based models of

extinction risk in farmland birds showed poor predic-

tive ability among different regions (Pocock, 2011), per-

haps due to varying patterns of key threats. Similarly,

Fritz et al. (2009) showed that considerable geographic

variation in mammalian extinction risk derived from

trait-based models could be explained by considering

varying patterns of past anthropogenic impacts.

Studies that do not consider threats might also suffer

from a lack of mechanistic information that may be of

critical interest for implementing conservation action.

For example, declines due to a waterborne disease

might require very different management strategies to

those caused by habitat loss along streams (e.g., Murray

et al., 2011), although they may be correlated with the

same intrinsic traits (ecological specificity to streams,

for example). The examples above underscore the

Fig. 1 Schematic of the interactions between intrinsic and

extrinsic factors that drive variability in extinction risk. We con-

sider these variables as existing and interacting in some ‘trait

space’ for each species. The effects of these interactions on a spe-

cies’ distribution and/or abundance play out in that species’

‘demographic arena’, and culminate in variable extinction risk.
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importance of considering both intrinsic and extrinsic

factors together to obtain a more complete picture of

extinction risk (Fisher et al., 2003; Purvis et al., 2005;

Cardillo et al., 2008) (Fig. 1).

With these considerations in mind, we aimed to take

stock of the general use of threats in the comparative

extinction risk literature and to investigate the potential

effects of their exclusion on the interpretation and

application of model results. First, we quantify the

prevalence of threat variables as predictors of extinction

risk in a large sample of published studies. We quantify

the threat types considered in these studies, assess the

range of methods that have been used for the quantifi-

cation of threats to individual species and catalogue the

model types that have been used to integrate threats

into the study of extinction risk. Second, we present

two case studies in which we directly compare extinc-

tion risk models developed with and without threats to

highlight some of the key effects that threat omission

may have for model interpretation and downstream

end-uses in conservation management, such as species

ranking on the basis of specific conservation need.

Materials and methods

The use of threats in comparative extinction risk studies

We reviewed 98 studies drawn from the ISI Web of Science

that investigated the correlates of extinction risk across numer-

ous taxonomic groups and geographic regions. Specifically,

we compiled referenced literature from previous reviews on

extinction risk (Fisher & Owens, 2004; Purvis, 2008; Reynolds,

2005; Bielby et al., 2010; Cardillo and Meijaard, 2012) and all

related studies published up to 2011, which were identified by

the search terms ‘extinction risk’, ‘extinction proneness’,

‘vulnerability + extinction’, ‘susceptibility + extinction’, ‘cor-

relates + extinction’, ‘predictors + extinction’ and ‘drivers +
extinction’. A list of the reviewed literature appears in Supple-

mentary Information S1. All variables used in each study were

recorded and classified into extrinsic or intrinsic factors (e.g.,

see Fig. 1), and subclassified into specific categories (e.g.,

extrinsic factors could be classified as either ‘direct threats’,

such as habitat loss or human population density, or ‘other

extrinsic’ variables, typically environmental or geographic

factors such as temperature, rainfall, latitude or altitude). We

then recorded the data source, the modelling framework,

whether the extrinsic factors were spatially explicit or not, the

taxon-specific quantification method and whether the variable

was a significant predictor of extinction risk or not.

Modelling extinction risk with and without threats: two
case studies

We evaluated the influence of considering threats on predic-

tions of extinction risk using two model systems: (i) a global

analysis of mammals (following the framework of Davidson

et al., 2009) and (ii) a continental analysis of Australian

amphibians (following Murray et al., 2011). These two study

systems represent different taxa, spatial scales (global and

continental) and threat data availability and resolution, pro-

viding typical scenarios encountered in extinction risk studies.

While for mammals our analysis is global in scale and con-

tains many species, the analysis was conducted at a fairly

coarse resolution (1 degree, approx. 100 km) with relatively

little information about threats (restricted to the human influ-

ence index (Sanderson et al., 2002) and a measure of human

population density (Jones et al., 2009)). In contrast, our

amphibian data set was geographically and taxonomically

more restricted (continental), but we were able to utilize a lar-

ger number of key threats (disease, invasive species, habitat

degradation) at better spatial resolutions (9 arc seconds,

approx. 250 m).

Extinction risk models. For both systems, random-forest (RF)

models were developed for the prediction of species’ IUCN

red list categories (Cutler et al., 2007; Breiman & Cutler, 2011).

RF is a nonparametric, tree-based, machine-learning approach

suited to modelling extinction risk due to its limited assump-

tions about data types and properties, its high classification

stability and performance, its ability to cope well with a large

number of potentially correlated predictors and nonlinear

responses and its useful variable importance probe and partial

dependence plots that can be used for variable selection and

response visualization (Davidson et al., 2009; Murray et al.,

2011). We also built conditional inference trees for graphical

depiction of the main quantitative relationships between pre-

dictor variables and the response. We used the randomForest

(Liaw & Wiener, 2002) and party (Hothorn et al., 2012) pack-

ages in R (R Development Core Team, 2012) for model devel-

opment. Although models that do not account for the

potential problem of pseudoreplication arising from phyloge-

netic relatedness among species have been criticized, we

avoided such methods (e.g., PIC) because our models con-

tained numerous nonheritable, nonevolving predictors

(extrinsic traits and threats) with no conceivable phylogenetic

underpinning, such that we would not understand the impli-

cations of forcing phylogenetic correction in this instance (see

Discussion for more details).

For mammals, models with and without threats were devel-

oped for comparison on 4019 (of ca. 5400) terrestrial mammal

species. We used a dichotomous response variable to repre-

sent extinction risk: species classified as Vulnerable, Endan-

gered, or Critically Endangered by the IUCN were considered

‘Threatened’, and species listed as Near Threatened and Least

Concern were considered “Non-Threatened” (IUCN, 2009).

For amphibians, the model with threats was previously pub-

lished as a standalone extinction risk analysis (Murray et al.,

2011), so here we replicated this model and then excluded

threats for direct comparison. For amphibian models with and

without threats, IUCN Red List ‘Trend’ classifications (Declin-

ing or Stable) were analysed for 198 Australian amphibian

species with sufficient data (ca. 90% of all Australian amphibi-

ans). Although these dichotomous response variables may

oversimplify the concept of extinction risk, we felt this was
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appropriate here because it more simply illustrates the direct

influence of threats across two study systems, minimizes

assumptions and is consistent with previous studies. For both

study systems, we used (for amphibians) or further developed

(for mammals) previously published databases to provide

information on predictor variables; both intrinsic species traits

(e.g., body size, geographic range size, ecological mode, etc.)

and numerous extrinsic factors and threats (e.g., human influ-

ence index, the distribution of disease, invasive species, habi-

tat loss, etc.) that were hypothesized to be of interest for

explaining the conservation status of mammal or amphibian

species.

Model comparisons. For each study system, we compared a

number of different model outcomes between models with

and without threats to understand the way in which threats

may affect the interpretation and use of results. We evaluated

model predictive performance, the agreement between models

with and without threats for species classifications, the contri-

bution of threats to mechanistically understanding predicted

IUCN classifications and the effect that threats have on one

potential downstream effect relevant to conservation decision

making, namely, species ranking on the basis of specific

conservation need.

We compared performance between models with and with-

out threats with a range of metrics, including overall classifica-

tion accuracy (percentage of species correctly classified, PCC),

sensitivity, specificity and Cohen’s Kappa. We examined clas-

sification agreement by looking at which species had contrast-

ing classifications from models with and without threats. We

also correlated raw probability scores for each species from

models with and without threats to assess overall model

agreement. For amphibians, we also examined correlations

within subclasses of species corresponding to an important

intrinsic trait (ecological group) to examine the way interac-

tions might influence disagreement between models with and

without threats. For mammals, we used an internal RF vari-

able importance probe to rank the influence of threats vs.

intrinsic traits in the model that included threats. The same

outputs for the amphibian model with threats are presented in

Murray et al. (2011). By definition, models without threats

provide no information about them, so variable importance

statistics and decision trees were not generated for these

models.

Finally, we evaluated the agreement between species classi-

fications made by RF models with and without threats for

each study system as they would relate to a decision oriented,

downstream end-use, species ranking. We constructed a sim-

plistic, hypothetical situation in which only a certain percent-

age of species could be allocated conservation resources due

to the ever-present constraint on conservation funding (Bottrill

et al., 2008; Rondinini et al., 2011; Cullen & White, 2013). For

this exercise, we deemed that funding should be allocated on

the basis of our confidence that a species is at risk of extinc-

tion. In this hypothetical framework, we used model results to

identify which species should receive resources by ranking

them by the certainty that models had in classifying them as

at risk of extinction (highest confidence in the prediction), then

compared the membership of priority species lists derived

from models with and without threats (note: we are not advo-

cating this or any particular prioritization scheme in this

study, but rather include this analysis for demonstrative pur-

poses only to illustrate the potential influence of threat exclu-

sion for a practical conservation oriented end-use).

Results

The use of threats in comparative extinction risk studies

How often are threats considered in extinction risk analyses?

Of 98 extinction risk studies, many (78%) included

extrinsic factors of some kind (e.g., bioclimatic or geo-

graphic information). However, most (63%) did not

include direct threats, such as habitat loss or overex-

ploitation (Fig. 2a). Threat use has, however, increased

in step with an overall increase in the number of stud-

ies published per year and with increasingly variable-

rich models (Fig. 3). The mean number of predictor

variables included in models across all 98 studies was

9.3, comprising an average of 6.3 intrinsic trait variables

and 3.0 extrinsic variables. Among the 36 studies in

(a) (b)

Fig. 2 (a) Composition of extinction risk studies that consider threats, other extrinsic traits and intrinsic traits (N = 98 studies), (b) The

four most commonly considered threats and their proportional use in 36 extinction risk studies that considered threats. Many more

threat variables appeared in only one or two studies. Overall, 59% of unique threat variables were significant predictors of extinction

risk in at least one study.
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which direct threats were considered, an average of 6.3

intrinsic traits, 3.1 direct threats and 2.5 other extrinsic

factors (i.e. environmental or geographic factors) were

used (Fig. 3c).

What are the most common threat variables? Among the

36 reviewed studies that considered threats, 70 differ-

ent threat variables were used, with a few used in more

than one study. The most frequently used threat vari-

ables were human population density, represented in a

variety of metrics (26 studies), invasive species (16) and

habitat loss or degradation (9) (Fig. 2b). The Human

Influence Index, a compound spatial measure compris-

ing eight metrics of human presence and activity (San-

derson et al., 2002), appeared in three studies. Most

threat variables appeared in just one (53 variables) or

two (7 variables) studies. Overall, 41 (59%) of the 70

threat variables used were significant predictors of

extinction risk in at least one study.

How are threats quantified at the species level? Only 21

studies (58% of 36 studies including threats, and 21% of

all 98 reviewed) included threat variable measurements

that were derived from spatially explicit threat and spe-

cies occurrence data, each represented in a variety of

ways. In these studies, quantification methods were

diverse but predominantly based on spatial overlap

between known threat locations and a species’ geo-

graphic range (Table 1). No studies evaluated the

potential variability in threat quantification associated

with method of calculation (recently reviewed by Di

Marco et al., 2013). In a small number of cases, threats

were assigned as categorical designations based on

(a)

(b)

(c)

Fig. 3 Trends in extinction risk publications. (a) The proportion

of studies considering threats has increased through time,

against a background of more publications per year. (b) From

2000, most studies have considered some form of extrinsic pre-

dictor, including threats, environmental or geographic factors.

(c) In step with more publications per year (a,b), models of

extinction risk have also become more variable rich with fairly

consistent inclusion of threat or other extrinsic factors since

2000; however, on average, models remain dominated by intrin-

sic trait variables.

Table 1 Quantification methods for species-specific threat

values across a sample of 31 extinction risk studies that have

considered threats quantitatively

Quantification Method

Abs. Frequency

of Use

Area-weighted mean grid cell value across

species’ range

14

Proportion of species’ range in threat area 8

Overlapping grid cell count (threat and

species distribution)

7

Ranked categories derived from percentage

overlap between polygons

5

Area-weighted mean by country 5

Average of values at occurrence points 4

Compound measure of external threat from

cooccurrence with other threatened taxa

2

Percent of converted landscape area within

species’ range

1

Median grid cell value across species range 1
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expert opinion and published accounts; for example,

perceived threat from introduced competitors (Owens

& Bennett, 2000) or imperilment by secondary biologi-

cal interactions (Olden et al., 2008).

How has extinction risk been modelled when including

threats? Of the 31 comparative analyses of extinction

risk that we reviewed in which threats have been

included in a quantitative modelling framework, most

modelled extinction risk using regression on phyloge-

netically independent contrasts (PIC; Purvis and Ram-

baut, 1995) (Fig. 4). Except for Lee & Jetz (2011), no

study used more than one method and explicitly com-

pared results or considered consensus, although Bielby

et al. (2010) studied the relative performance of decision

tree vs. PIC-based methods for modelling extinction

risk across a range of taxa for which at least one threat

(human population density) was considered.

Case studies – directly comparing models with and
without threats

Overall performance statistics. The model comparisons

indicated that threats modestly improved overall

model predictive performance in terms of how well

predicted threat categories agreed with original IUCN

Red List classifications on which the models were built

(Table 2). The effect of including threats was less

apparent for mammals than it was for amphibians

(Table 2). These improvements in overall classification

accuracy translate to correct classifications for an

additional 8 and 71 amphibian and mammal species

respectively. For both systems, improvements in sensi-

tivity and specificity indicated that the models with

threats were less likely to make both false-positive

(predict a threatened species when it is not threatened)

and false-negative (predict a nonthreatened species

when it is threatened) trend classifications than the

intrinsic trait-only models. Combined, this lead to 12%

and 5% increases in Kappa (an overall test of

agreement between observed and predicted classes) for

amphibians and mammals respectively (Table 2).

Reasons for misclassification in each case study may be

numerous (e.g., original misclassification by IUCN or

genuine classification errors) and of potential interest

but are not the focus of this study (see Davidson et al.,

2009; Murray et al., 2011 for discussions of misclassifi-

cation).

Classification agreement. Models with and without

threats classified species in different ways. For amphib-

ians, models with and without threats disagreed on the

classification of 22 species (11.1% of 198) (Table 2). Ten

(45.5%) of these were originally listed by the IUCN as

having a ‘Declining’ Red List trend, a significantly

higher proportion than the overall proportion of species

with a declining trend status in the data set (24.7%;

Fisher’s exact test odds ratio = 2.52, 95% CI = 0.91–
6.82, P = 0.045), indicating that disagreement between

models with and without threats was disproportion-

ately more likely for species considered at risk. In addi-

tion, the model that included threats correctly classified

eight (80%) of these, whereas the model without threats

correctly classified only two (20%; P = 0.023 Fisher’s

exact test), suggesting that threat information is able to

better identify species at risk that cannot be predicted

by intrinsic trait information alone. For mammals, mod-

els with and without threats disagreed on the classifica-

tion of 219 species (5.4% of 4019), a smaller

proportional difference (but translating to a higher

number of species) than that seen in amphibians

(Table 2). Again, species for which the models dis-

agreed were disproportionately (34.4%) more likely to

be threatened when compared to the background rate

of threatened species (16.1%; Fisher’s exact test odds

ratio = 2.72, 95% CI = 1.91–3.83, P < 0.001). For mam-

mals, the model that considered threats was more likely

(55%) to detect threatened species (i.e. return a correct

classification) than the intrinsic trait-only model (45%),

but this difference was not significant (P = 0.345, Fish-

er’s exact test).

Interactions and model agreement. Considering the

strength of the classification prediction, models with

and without threats were strongly correlated (mam-

mals: overall R2 = 0.870, P < 0.001; amphibians: overall

R2 = 0.709, P < 0.001) (Fig. 5a,b). However, when the

Fig. 4 Proportional use of model types for studying extinction

risk when threats are considered quantitatively (N = 31 studies).

PIC = phylogenetic independent contrasts, and is by far the

most common method used. Given that threats (and other

extrinsic factors) are nonphenotypic, nonevolving traits that

may have no phylogenetic signal, the use of PIC in isolation for

modelling extinction risk has been criticized (see text).
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correlations were exposed to the effects of other impor-

tant factors (e.g., intrinsic traits), agreement between

models with and without threats in some cases deterio-

rated. For example, an interaction between the threat

overlap with a pathogen and the intrinsic trait ecologi-

cal group meant that there was no discernible correla-

tion between predictions from models with and

without threats for amphibian species associated with

permanent water (a key amphibian life-history factor)

(Fig. 5b).

Variable importance. For mammals, the most important

predictor variable was geographic range size, while the

threat proxy human population density was a less

influential but still important predictor variable. The

Human Influence Index variable was a middle-range

predictor (Supplementary Information Fig S2.1). For

amphibians, the variable importance probe indicated

that the most important single variable was ecological

group, followed by two threat variables (distributional

overlaps with a pathogen and an invasive species)

(Murray et al., 2011).

Mechanistic explanatory information. For mammals, the

conditional inference tree with threats depicted signifi-

cant threat variables interacting with intrinsic traits to

explain patterns of extinction risk (Supplementary

Information Fig. S2.2). Human impacts and human

population density interacted with numerous intrinsic

trait variables (e.g., mass specific production and

geographic range) to influence threat status. A similar

result was evident for amphibians, with the threats of

an invasive pathogen and an invasive species interact-

ing with ecological group (Murray et al., 2011). The

presence of significant threats together with significant

intrinsic traits in the tree, and clear interactions

between them in some cases, provides additional mech-

anistic information over intrinsic trait-only models in

both study systems that could be relevant for conserva-

tion management.

Species ranking. For both amphibians and mammals,

our results indicated that agreement between priority

lists was strongly dependent on the percentage of spe-

cies selected. For amphibians, when selecting only the

top 5% of species (N = 9 species), only four amphibian

species appeared on both lists (56.6% disagreement).

For mammals, when selecting the top 1% of species

(N = 40) only 23 species appeared on both lists (42.5%

disagreement). For both groups, this improved to

around 20% disagreement between lists when the top

5% and 15% of species were prioritized for mammals

and amphibians respectively. At higher proportions,

amphibians tended towards greater disagreement

while agreement between models for mammals

slightly improved (Fig. 6) (Note: if we continued to

increase the proportion of selected species indefinitely

disagreement between species priority lists would

eventually reach 0% as both priority lists would

contain all species).

Table 2 Performance statistics for models predicting declining population trends in amphibians (continental) and threatened

mammals (global), comparing intrinsic trait-only models with models that also incorporate threats

Metric

Australian amphibians

(n = 198)

Global Mammals

(n = 4019)

With threats Intrinsic only With threats Intrinsic only

Out of bag error (OOB; overall classification

error rate)

12.63% 16.67% 12.22% 13.98%

Species correctly classified 173 165 3528 3457

Percentage of species correctly classified (PCC) 87.37% 83.33% 87.78% 86.02%

Sensitivity (% of Threatened species correctly

classified)

75.51% 63.27% 65.18% 63.63%

Specificity (% of Non-Threatened species

correctly classified)

91.28% 89.93% 92.14% 90.32%

Cohen’s Kappa (95% CI in brackets) 0.66 (0.54–0.79) 0.54 (0.40–0.69) 0.56 (0.52–0.60) 0.51 (0.47–0.55)

Disagreement in classification between

models with and without threats

22 species (11.1%) 219 species (5.4%)

Note: “Threats only” models were also tested for reference, and had PCC values of 81.46% and 79.29% for mammals and amphibi-

ans respectively. These models are not considered further here for brevity, but demonstrate that (i) threats may have inferior but

still considerable ability to predict threatened species even in the absence of any intrinsic trait data and (ii) the addition of variables

to models follows a pattern of diminishing returns in terms of overall performance (PCC). For management, the more interesting

and significant differences between models are related to the disagreement in results for the classification of species that arises

between available models (see main text).
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Discussion

We show that threat variables are often significant pre-

dictors of extinction risk despite being irregularly con-

sidered in comparative extinction risk studies, exposing

a disconnect between the drivers of biodiversity loss

and our ability to interpret them for management.

However, the use of threats is increasing in step with a

greater number of studies published per year that are

utilizing increasingly variable-rich models. This sug-

gests that threat data availability and quality may be

improving and that authors are increasingly cognizant

of the potentially important role of threats in modelling

extinction risk. Our quantitative analyses confirm that

incorporating threats could both improve the predictive

accuracy of extinction risk models and provide more

tangible results that could be leveraged by managers to

improve conservation outcomes. We also show that

quantifying threats and integrating them into models

nevertheless present a range of challenges, many of

which could be addressed in future studies.

Current use of threats in comparative extinction risk
studies

Across studies that have considered threats, the most

common were various measures of human population

impact, invasive species and habitat degradation or

loss. A large number of other threat types have also

been used, but most of these were restricted in use to

just one or two studies. This threat specificity could

indicate that either threats are indeed highly idiosyn-

cratic and need to be evaluated on a case-by-case basis

Fig. 6 Agreement (%) in the classification of threatened species

between extinction risk models with and without threats as a

function of the proportion of species selected for hypothetical

prioritization (see text). Our two case studies, Australian

amphibians and global mammals are shown. For both case stud-

ies, selecting shorter lists equated to greater disagreement

between models with and without threats in which species

ranked highest. Priority species lists were derived by selecting

the top x% (range 0.25–25% for mammals; 4–25% for amphibi-

ans) of species when ranked by their probability of being classi-

fied as threatened or in decline (see text).

(a)

(b)

Fig. 5 Correlation between models with and without threats

that predict whether a species is a) threatened (mammals,

N = 4019, overall R2 = 0.870, P < 0.001) or (b) in decline

(amphibians, N = 198, overall R2 = 0.709, P < 0.001). a, b) Prob-

ability values associated with each species’ classification are

plotted, dashed lines indicate perfect 1 : 1 agreement. (a) Black

line indicates line of best fit. (b) Amphibian species are colour

coded by their ecological group, with line of best fit shown for

each group; R2 (P value in brackets) for Ephemeral water associ-

ated = 0.164 (<0.001), Ephemeral/Permanent water associ-

ated = 0.067 (0.099), Moist bog/soak associated = 0.624 (0.004),

Permanent water associated = 0.050 (0.307), Stream associ-

ated = 0.448 (<0.001), Terrestrial = 0.811 (<0.001), shows that

while overall agreement is reasonable, the inclusion of threats

can strongly affect classifications depending on additional

factors, in this case ecological group.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 483–494

490 KRIS A. MURRAY et al.



to achieve explanatory power alongside intrinsic traits,

or that there is a paucity of available information on

the distribution and magnitude of threats relevant to

a range of study systems and spatial scales. These

issues reflect the practical difficulties involved in the

threat quantification process, but suggest that threats

should continue to receive increased attention in future

studies.

The average number of threats considered in studies

was modest (ca. 3 variables), at about half the average

number of intrinsic species traits (ca. 6 variables) in

models that combined both variable types. Previous

species-based threat assessments suggest this may be

inadequate. For example, on one continent where data

were available (Australia), an average of about three

threats per threatened species is listed, although this, as

well as the composition of major threats, is highly vari-

able across taxonomic groups and according to threat

classification itself (Evans et al., 2011). From another

source, the average number of threats listed per species

by the IUCN for assessed mammals is lower at 1.16

(IUCN, 2012a); however, threat listing is frequently

empty for nonthreatened (Least Concern) species. This

figure rises to an average of 2.84 major threats (i.e. level

‘0’) per threatened species, and to 4.38 threats per spe-

cies for those that are assessed with more detailed

threat information (level 1 or level 2 IUCN threat cate-

gorization) (IUCN, 2012a). These figures suggest that

there is considerable need to incorporate additional

and a more diverse range of threats into future compar-

ative studies.

Quantitative effects of ignoring threats in extinction risk
analyses

Our case studies on mammals (global) and amphibians

(continental) showed that the inclusion of threats could

improve predictive accuracy of models, where even

modest improvements in overall classification accuracy

(12% and 5% improvements in Kappa for amphibians

and mammals respectively) translated to better classifi-

cations for tens to hundreds of species. Furthermore,

ignoring threats resulted in failure to detect threatened

species and resulted in disagreements between models

in the classification of species that were disproportion-

ately likely for species at risk. Ignoring threats also had

significant downstream effects relevant to conservation

decisions. For example, priority species lists derived

from models with and without threats showed consid-

erable disagreement (20–60%) in the species that would

receive conservation resources on the basis of model

results in our hypothetical scheme, and that this dis-

agreement was strongly dependent on the number of

species that would be selected for prioritization.

Classifications may also strongly interact with other

significant factors that drive variation in risk (e.g.,

intrinsic traits). This highlights the way that threats and

other extrinsic factors can strongly interact with spe-

cies’ biological traits to create unique pathways to

decline, and failing to incorporate such effects could

lead to false inferences or poorly supported decisions.

Given the costs of managing threatened species, more

accurate, mechanism-oriented and species-specific

results should help managers enact more focussed and

effective conservation actions.

Our continental case study on amphibians proved

more sensitive to the inclusion of threats than our glo-

bal mammal analysis. The higher predictive value of

threat information in our amphibian analysis could be

explained by the difference in quality and specificity of

the threat data, which is a side effect of the different

scales between study systems. At finer spatial scales

(continental), we were able to collect or derive threat

information on a greater number of key threats and at

better resolutions, whereas at global scales we relied on

vague proxies (population density) or conglomerate

indices (Human Influence Index) of threats. We have

no way of knowing whether the relative unimportance

of these threat variables observed when modelled

alongside intrinsic traits in our global mammal analysis

is due to a genuine lack of importance or simply inade-

quate representation of key threats. Our amphibian

analysis and follow-up work improving threat repre-

sentation for mammals (Di Marco et al. unpublished

results) suggest the latter. It may be that some key

intrinsic traits, such as range or body size, remain better

proxies for the impact of threats up until the point that

mechanistically more relevant or better quality threat

data are included in models.

Future priorities: how can we better incorporate threats
into extinction risk analysis?

Understanding threats impacting imperilled species

has been one of the main goals of conservation and

threatened species research (Pimm et al., 1988; Wilcove

et al., 1998; Prugh et al., 2010). This has naturally led to

a strong bias in threat characterization across species

(see e.g., IUCN threat listing statistics above). For com-

parative analysis, the difficulty of assigning threats to

species is that most species lack information on ‘poten-

tially’ threatening processes (i.e. threats that are pres-

ent, regardless of perceived impact). Reducing this bias

has already commenced with the development of some

promising generic threat classification schemes (Balm-

ford et al., 2009; Harcourt & Parks, 2003; IUCN, 2012b;

Salafsky et al., 2008), and attention to species-indepen-

dent threat mapping is increasing in availability,
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quality and scale (e.g., IPCC, 2007; AfriPop, 2012;

Microsoft, 2012; UCDP, 2012). Efforts such as these will

continue to improve our ability to incorporate a more

diverse range of threats of higher quality into compara-

tive extinction risk studies.

More practically, it is challenging to meaningfully

quantify extrinsic threats at the species level. In com-

parison with the already difficult task of quantifying

intrinsic traits (Gonz�alez-Su�arez et al., 2012), the gen-

eral heterogeneity among threat quantifications and

their difficulty of measurement is likely ultimately

related to the abstract nature of some of the threats

themselves (e.g., climate change, hunting, invasive spe-

cies). In addition, quantifying threats to species is con-

founded at its most fundamental level by difficulties in

defining the geographic distribution of species (Rondi-

nini et al., 2006; Jetz et al., 2008; Gaston & Fuller, 2009;

Di Marco et al., 2013). Indeed, well-defined, high-qual-

ity geographic maps of species ranges are lacking for

the majority of species, even within well-studied taxo-

nomic groups like mammals (Boitani et al., 2011; Jetz

et al., 2012). Despite these challenges, we are optimistic

that progress on threats for extinction risk analysis can

be made. We propose several avenues that might lead

to improved use of threat information and to more

practical outcomes for conservation science.

Uptake. Our study provides some compelling reasons

for researchers to continue the increasing trend of

explicitly considering threats in future studies. The

costs of thinking more critically about the role of threats

and exploring available data on threats for extinction

risk analyses seem minimal in comparison with enact-

ing conservation measures. Including information on

threats, whether spatially explicit or not, can only bene-

fit models in terms of explanatory power and interpret-

ability as uninformative threat data will simply be

outcompeted at the modelling stage if other more infor-

mative predictors are in place. Costs (particularly finan-

cial or effort related) are conceivable where the

collection or compilation of threat data requires more

resources and comes at the direct expense of some

other achievable conservation benefit. In these circum-

stances, cost-benefit analyses that examine the expected

value of information or tolerance limits of uncertainty

for management could be valuable (Regan et al., 2005;

Runge et al., 2011).

Realism and data quality. In the context of a species-level

analysis, it is important to have some idea about how

realistically threats may be represented in order for

their importance to be properly assessed in comparison

with intrinsic traits. A poor representation of a threat

may simply obscure its true importance in a modelling

exercise, which might then have implications for con-

servation management. Another priority should thus

be to strive for better, more biologically meaningful,

spatially relevant and verifiable quantification of

threats. This could include a shift to more quantitative

representations, better ground truthing of data,

improved evaluation of species’ distributions and a

push towards characterizing exposure to potentially

threatening processes for all species, not just for species

that are perceived to be in trouble.

Threat quantification uncertainty. Most methods of spe-

cies-level assignment currently assume some kind of an

average value that is dependent not only on spatial

information of threats but also species’ distributions.

Given the potential variability in threat quantification

at the species level, Di Marco et al. (2013) find that it is

important to consider how different methods might

influence threat quantification. We extend this to sug-

gest that it is also necessary to know how this variabil-

ity might subsequently affect extinction risk model

results. Considering sensitivity analyses to directly

determine the influence of quantification variation

should be a short-term priority. Similarly, trait variabil-

ity itself has been recently integrated into an intrinsic

trait-only model of extinction risk in mammals

(Gonz�alez-Su�arez & Revilla, 2012). We expect extrinsic

factors in some cases could be quantified and tested in

a similar way.

Scale: A trade-off in resolution and scale seems inevi-

table as macroecological studies approach continental

and global scales. This trade-off implies that global

threat quantification may be difficult, where local threat

characterization may be more feasible (e.g. Karanth

et al., 2010). Problems may also arise when choosing

between a potentially precise reflection of local dynam-

ics (such as the patterns identified by Di Fonzo et al.,

2013), or a less direct and less precise inference about

species-wide dynamics (Purvis et al., 2005). Large-scale

studies may thus miss distinctive drivers of decline that

may be unique to particular geographic regions or taxo-

nomic groups (Thomas et al., 2006). We cannot discount

that global analyses can be useful for local conservation

but rather where issues such as these are anticipated,

investigating the effect of scale directly or considering

the development of finer scale analyses should be a

priority.

Analysis frameworks. We found that phylogenetic inde-

pendent contrasts (PIC) was the most commonly used

modelling framework when incorporating threats into

extinction risk analyses. The main argument for using

phylogenetic methods is a perceived need to account

for pseudoreplication when including variables that
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have a phylogenetic signal, which may indicate that

species are nonindependent units for analysis (Bielby

et al., 2010). However, several authors have questioned

whether this makes sense in an extinction risk context

because extinction risk itself and numerous other

potential predictor variables often included in such

models (e.g., bioclimate, geographic location, human

population pressure) are not evolved traits (reviewed

by Grandcolas et al., 2011). To add to this debate, we

found that most extinction risk analyses include extrin-

sic factors (including threats), perhaps rendering the

use of phylogenetic comparative methods in isolation

largely unsuitable.

As threats and other extrinsic factors continue to be

quantified, mapped and integrated into models of

extinction risk, we should be particularly wary of this

methodological issue and strive towards the develop-

ment of alternative analysis frameworks (see e.g.,

Grandcolas et al., 2011 for some suggestions from the

field of biogeography). Starting with a strongly biologi-

cally informed conceptual model and hypotheses that

underpin and inform such correlative analyses is likely

to be useful. Also, critical will be developing methods

that can effectively quantify or capture meaningful cat-

egorical or continuous threat values (e.g., expert opin-

ion), and have the capacity to effectively grapple with

interactions and nonlinearities that are frequently

encountered in studies of extinction risk. Finally, a shift

from correlative to mechanistic or hybrid frameworks

as seen in other fields, such as species distribution

modelling (e.g., Kearney & Porter, 2009) and the predic-

tion of biodiversity patterns (e.g., Gotelli et al., 2009), is

an exciting development (e.g., see Keith et al., 2008;

Fordham et al., 2013).
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